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Decision Process for Business Continuity and Disaster Recovery

PROBABILITY
• Many real-life problems are probabilistic

• Probability used in quality control, educational 
testing, business predictions, etc.

Probability Basics
• In the situations of interest

• More than one possible outcome (e.g. When a dice 
is rolled, there are 6 possible outcomes)

• Uncertainty about the actual outcome

• Situation is called an experiment

• Outcomes are called events

• Events which are not lists of other events are called 
elementary events (e.g. Face of dice on a roll is 4)

• Events which can be decomposed into elementary 
events are called compound event (e.g. An even 
numbered face comes up in the roll of a dice)

Module 4

Chapter 8
Computational Statistics
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SAMPLING
We often have to make decisions based on limited data.

• A sip of wine to judge the quality of a bottle

• A drop of blood to determine infection

• Opinions of about 2,000 people to determine the mood 
of the nation

• 30 stocks in the DJI to determine the state of a market 
comprising over 3,000 stocks

• A spoonful for a kid to determine the likeability of a 
new dish

Module 4

Assigning Probability
If an event E consists of m of the n equally likely elementary 
events of the experiment:

• Then, the probability of the event is given by 

P(E) = m/n
• E.g. probability of an even face in a roll of a dice

n = 6
m = 3
P(E) = m/n = 3/6 = 0.5

Combinatorial Analysis
• Theorem: If k experiments are performed, and there 

are ni different outcomes for the ith experiment, I ≤ i 
≤ k, then there are n1 x n2 x … nk different outcomes 
when all k experiments are performed and order 
matters. This is written as   

• Theorem: For a population of n elements, there are 
n(n-1)…(n-k+1) distinct ordered samples of size k 
if samples are taken without replacement. This is 
written as (n)k.

Example: 5 dice are rolled. What is the probability that no 
two dice show the same face?

• N = 65

• M = (6)5

• Probability =  

Example: 2 balls drawn from an urn containing 3 balls. 
What is the probability of drawing a specific ball?

• Calculate n

• First ball can be picked in 3 ways

• Second ball can be picked in 2 ways

• So, n = 3 x 2 = 6

• Calculate m

• Selected ball may be first or second  
to be picked

• If first, 2 ways to pick second ball

• If second, 2 ways to pick first ball

• Total of 2 + 2 = 4 ways. So, m = 4

• Probability = 4/ 6 = 2/3



Interesting Early Use From 1279

Trial of the Pyx

King of England, Edward I, wanted a procedure to ensure 
that the coins minted met the defined standards for gold 
or silver content.

• Pyx derived from Greek word for box

• Referred to the container holding the coins to be 
sampled

• Coins in the pyx were probably selected at random 
from the mint’s output

The sampled coins were compared to a plate stored in a 
protected vault.

If order does not matter, for example, a hand of bridge, and 
k samples are taken without replacement from n objects, 
the number of elementary outcomes is 

This is because each of the (n)k ordered outcomes can be 
rearranged k! times.

Example: In bridge, what is the probability that a given 
hand contains no spades?

Unordered Sampling
• n = number of ways a hand can be dealt = C(52, 13)

•  m = number of ways a hand can be dealt without a 
spade = C(39, 13)

•  Probability
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Most of these decisions would be impossible  
without sampling.

• If you need to drink the whole bottle to determine its 
quality, the assessment is too late

• If the doctor needs all of your blood to determine the 
infection, it would be too late

• If the administration needed to run the census every 
month to determine what the country wanted, it would 
be too expensive

UNEQUALLY 
LIKELY 
OUTCOMES

What if the outcomes are not equally likely?  

• e.g. toss a coin twice

• Can get 0, 1 or 2 heads

What is the probability of getting 2 heads?

The sample space of an experiment is the set of all 
elementary outcomes of the experiment.

• E.g. S = {{H,H}, {H,T}, {T, H}, {T, T}} for the above 
experiment

• In our example, P(0) = P(2) = ¼; P(1) = ½

Module 4



In the general case of N elementary outcomes E1, … En, 
which may not be equally likely, 

• Let P(Ei) = pi ≥ 0 with

• Define P(E) = ∑P(Ei); sum taken over Ei         E, as the 
probability of event E         S

• Then P is a probability measure on the finite sample 
space S

Rules
• Normality

P(S) = 1

• Non-negativity

•  Additivity

P(E + F) = P(E) + P(F) for disjoint sets E and F
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RANDOM 
VARIABLE

In experiments in which outcomes are not equally likely, it 
is useful to associate random variables with experimental 
outcomes.

Random variable (RV)

• A number x(ζ) assigned to every outcome ζ of an 
experiment

e.g. gains in a lottery, number of heads when a 
coin is tossed 100 times

• A random variable is a function whose domain is the 
set S of all possible outcomes of the experiment

e.g. when a die is thrown, gain for face i = 10i

How are the concepts of probability related to random 
variables?

In experiments, a common question of interest is What is 
the probability that x ≤ x1; or x1 ≤ x ≤ x2 ? (e.g. probability 
that the person weighs less than 180 lbs?)

Module 4

FUNCTIONS
• Often we like to know how the probability changes 

as a variable changes (e.g. probability of buying by 
income, age, etc.)

• Most of these outcomes of interest are not equally 
likely

• Convenient to represent probability as a function of 
the variable

• Can find optimum, rate of change etc.

• Let X and Y be sets

• Function f from X to Y is a rule which assigns to each 
of some (not necessarily all) elements x of X, an 
element f(x) of Y

• Domain of f is the subset D      X to which f assigns 
elements of Y

• Range of f is the subset R       Y of elements so 
assigned from Y

• We write f:

PROBABILITY 
MEASURE
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Probabilities are associated with events.

How do we calculate the probability that a RV meets some 
specified constraints?

• We start with the set of experimental outcomes for 
which the RV meets the specified constraints

e.g. {x ≤ x1}

Outcome (ζ) Weight (lbs) =  
Random Variable X (ζ)

John 250

Joe 175

Jill 135

Jane 145

Jack 170

Jay 195

Jean 140

• {x ≤ x1} is the set of experimental outcomes for which 
the RV meets the specified constraints

In our example, the set has 5 elements

probability x(ζ) ≤ 180 = 5/7

• RV satisfies the following properties

P{x = ∞} = 0
P{x = -∞} = 0

• In general, P{x ≤ x} of event {x ≤ x} depends on x 
because elements in the event {x ≤ x} change with x

Module 4

PROBABILITY 
DISTRIBUTIONS
Random Variables and 
Distribution Functions

• P{x ≤ x} is denoted by F(x)

• F(x) is called the cumulative distribution function of 
the random variable x

F(x) = 

• For any x, F(x) gives us the probability that the RV 
associated with the outcome is less than or equal to x

Cumulative Distribution 
Function

• Let us consider our weight example

No person weighs below 135 lbs, hence 
probability x(ζ) < 135 = 0

• Everybody weighs less than or equal to  
250 lbs

probability x(ζ) ≤ 250 = 1

Cumulative Probability 
Distribution Example:
The only way to earn between $0 and $100 is to draw tails, 
which gives you earnings of $0.

• This happens with probability q 
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Another Distribution Example:
A fair coin is tossed twice. Random variable x represents 
the number of heads. Find F(x).

• There are 4 equally likely, mutually exclusive cases 

{TT}, {HT}, {TH}, {HH}

x(TT) = 0; x(HT) = x(TH) = 1; x(HH) = 2

• We have the four cases

if x < 0, F(x) = 0

If x ≥ 2, F(x) = 1

If 0 ≤ x < 1, F(x) = P{TT} = ¼

If 1 ≤ x < 2, F(x) = P{TT} + P{HT} + P{TH} = ¾
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Properties of Distribution 
Functions

• F(- ∞) = 0

• F(+ ∞) = 1

• if x1 < x2, then F(x1) ≤ F(x2)

Non-decreasing property

• P{x > x} = 1 – F(x)

• P{x1 < x ≤ x2} = F(x2) – F(x1)

Continuity of a  
Random Variable
Random variable x is called continuous if the distribution 
function is continuous.

F(x-) = F(x)

• For a continuous random variable

P{x = x} = 0

Module 4

PROBABILITY 
DENSITY 
FUNCTION
The derivative of the probability distribution function (p.d.f.) 
is called the probability density function.

• Written as f(x) of the random variable x

• Given the p.d.f., the probability distribution F(x) is 
obtained as

Properties of the p.d.f.
• Since F(x) is monotonically non-decreasing
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• If x is a continuous random variable, f(x) is a 
continuous function

• Since F(∞) = 1, 

• P(x1 < x ≤ x2) = F(x2) – F(x1) =

Probability that RV x lies in interval (x1, x2) is the 
area under the pdf in (x1, x2)

CONTINUOUS 
RANDOM 
VARIABLES
Gaussian distribution

Parameters are μ and σ, often written as x ~ N(μ, σ2).

• One of the most important distributions

• Natural phenomena follow N

• Average of independent, identically distributed 
random variables

• Hence, this is also called the normal distribution

• Values available in tables

Francis Galton (1822-1911) was a first cousin of Charles 
Darwin who never worked to earn a living but measured 
everything compulsively. This is his view on Normal 
Distribution:

[T]he “Law of Frequency of Error” … reigns 
with serenity and in complete self-effacement 
amidst the wildest confusion. The huger the 
mob … the more perfect is its sway. It is the 
supreme law of Unreason. Whenever large 
samples of chaotic elements are taken in hand 
… an unsuspected and most beautiful form of 
regularity proves to have been latent all along.

EXPONENTIAL
DISTRIBUTION

If events over non-overlapping intervals are independent, 
then the distribution of waiting times for these events is 
exponential.

• F(x) = 1 – e-λx 

Example: The waiting time at a restaurant is exponentially 
distributed with a mean of 5 (λ = 1/3) minutes. Probability 
wait time > 10 minutes?

P(t > 10) = 1 – F(10) = 1 – (1 – e-10/5) = 0.135



Priors
For some distributions, it is possible to specify prior belief. How confident are you about the parameters of the 
distribution? E.g. for the binomial distribution, the beta distribution is the prior distribution. You can express 
confidence in your estimate of p and q by raising α and β.
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BERNOULLI 
DISTRIBUTION
x is Bernoulli distributed if x takes the values 0 and 1  
with probabilities

P{x = 1} = p; P{x = 0} = q = 1 – p

• Coin toss is an example

BINOMIAL 
DISTRIBUTION

If n Bernoulli experiments are performed, with probability 
of success = p, the total number of 
favorable outcomes, y,  is called a 
Binomial random variable.

P{y = k} = (nk)pk .qn-k

p + q = 1; 0 ≤ k ≤ n

For example, if a coin is tossed multiple 
times, what is the probability of drawing  
5 heads?
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POISSON 
DISTRIBUTION
The number of occurrences of a rare event in a large 
number of trials follows a Poisson distribution.

Examples:

• number of telephone calls at an exchange over a fixed 
duration

• number of printing errors in a book

• number of winning tickets among those purchased in 
a large lottery

The p.d.f. of a random variable x that takes on values 0, 1, 2, 
… , ∞ with a Poisson distribution is given by

• P{x = k} =  

• It follows that, for a Poisson distribution

• Increasing for k < λ and decreasing for k > λ

Poisson Example
A spacecraft has 20,000 components. The probability that 
any one component may fail is 10-4. The mission will fail if 
5 or more components fail. How likely is that?

• When n is large and p is small, we can use the Poisson 
distribution, with λ = np = 20,000*10-4 = 2

• P(x ≥ 5) = 1 – P(x ≤ 4) = 1 – {P(0) + P(1) + … + P4)}

• 1 – e-2(1 + 2 + 2 + 4/3 + 2/3) = 0.052

P.D.F.’S IN 
BUSINESS 
RESEARCH

A common example is in modeling human behavior (e.g. 
consumer behavior).

If I am selling a product, different people will be  
willing to spend different amounts for the product.

• Often called “willingness to pay”

• Willingness to pay follows a p.d.f.

• Let us consider a simple example, uniform distribution

If I sell the product for a price above a consumer’s 
willingness to pay, they won’t buy, else they will buy 1 unit

• Then, demand

• 1 – p

• Downward sloping demand curve



Statistics on Random Variables
If the outcomes of an experiment are probabilistic, what can we “expect” the results to be?

• This is called the expected value or the expectation of the experiment

• The expected outcome after repeated trials of the experiment

• Calculated as the expectation of the p.d.f. associated with the RV  
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EXPECTATION
Given random variable x, the expectation of x, denoted as 
E(x) is defined as the weighted mean of the p.d.f. of x.

• Depending upon how the probabilities are specified, it 
may be calculated as:

Example:  Suppose you are given even odds on  
Roulette (double your money if you guessed right). What are 
the expected winnings by consistently betting on an  
odd outcome?

Random variable y = amount won by betting $1 on odd 
outcome.

• y = 1 if outcome x is odd; y = -1 if x is even

• P{y = 1} = 18/37; P{y = -1} = 19/37

• E[y] = 1.P{1} + (-1).P(-1) = -1/37 = -0.027
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Expectation Implications
In the Roulette example, you will not lose $0.027/ game. 

• You can only win or lose $1.

• Rather, this is the loss/ $ you should expect if you 
played the game repeatedly.

Same thing happens in the stock market.

• Expectation of a normal distribution = μ (mean)

• Mean annual stock returns (including dividends) 
during 1960 – 1995 = 11.2%

So, stock returns in most years should be around  
11%, right?

Quoting Warren Buffett’s annual report. 2004:    

The average return of a distribution isn’t a very useful point 
forecast.

“In one respect, 2004 was a remarkable year for the stock 
market, ... an investor’s return, including dividends, from 
owning the S&P has averaged 11.2% annually (well above 
what we expect future returns to be). But if you look for 
years with returns anywhere close to that 11.2% – say, 
between 8% and 14% – you will find only one before 2004. 
In other words, last year’s “normal” return is anything but.”

CONDITIONAL 
PROBABILITY

Conditional probability is a way to incorporate additional 
information into probability estimate.

Say, we have n + 1 urns numbered 0 to n. The ith urn 
contains i white balls and (n – i) black balls

Question 1:

• Each urn has the same number of balls – n

• Hence, each urn is equally likely to be picked

• Hence, probability the ball came from urn n =

Question 2:

• Total number of white balls = 0 + 1 + … + n = 

• White balls in urn i = i 

• Hence, probability =  

What is the impact of the additional information that the 
ball picked is white?

• Probability estimate is more precise

• Conditional probability =  

• Unconditional probability =  

• Conditional probability = 
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This estimate is more precise:

The ball is less likely to have come from an urn with 
few white balls.

Another Example:  

Is September through October a good time to own stocks?   

• Anecdotally, a terrible time: Sep-Oct ’29 (-40%), Oct 19 
‘87 (-22%), Sep-Oct 02 (-16%), Oct 08 (-25%)

• Unconditional mean only slightly different from 0

• However

• If S&P 500 on 08/31 is more than 10% below 
6-month moving average, Sep-Oct mean return  
= +2.5%

• If S&P 500 on 08/31 is more than 10% above 
6-month moving average (2009), Sep-Oct mean 
return = -5.6%

BAYE’S RULE
• A formal rule to calculate conditional probabilities.

• Conditional probability of interest is calculated in 
terms of other conditional probabilities.

• Useful if various other conditional probabilities are 
known.

• Given that the number of times in which an unknown 
event has happened and failed: Required the chance 
that the probability of its happening in a single 
trial lies somewhere between any two degrees of 
probabilities that can be named.

E.g. if 10 out of a sample of 100 pins are defective, 
what is the probability that the total output of pins 
will contain between 9% and 11% defectives?

We often like to know the probability that Ai occurs, given 
the additional information that B has occurred.

• Written as P(Ai | B)

• e.g. which urn (Ai) did the ball come from, given that 
the ball drawn was white (B)

• or, the probability that a person who tests positive for 
a disease actually has the disease

• Note that this limits the sample space to those events 
which also include B

Say the elementary outcomes are equally likely

• If A can occur in nA ways, B can occur in nB ways, & 
both can occur in nAB ways

• Given than B has occurred, A can only occur in nAB 
ways (m)

• B occurs in nB ways (n)

• Then, P(A | B) = 

• So, P(Ai | B) = P(AiB)/ P(B)

• Consider the numerator, P(AiB)

• Using the same logic as before

• P(B | Ai) = P(AiB)/ P(Ai)

therefore

• P(AiB) = P(B | Ai).P(Ai)

• Now consider the denominator, P(B)

• If all the ways Ai, in which outcome B can be 
obtained, satisfy a special property

• they are mutually exclusive and collectively 
exhaustive (MECE)

• Then we can write P(B) = P(B|A1).P(A1) + … + 
P(B|An).P(An) = 

• Putting the two together

• This is called Bayes’ rule



Bayes’ Theorem 
Bayes’ theorem is often used to estimate the probability of a hypothesis or cause.

• The problem is that the unconditional (apriori) probabilities Aj are rarely known

• E.g. P(Sunny) = 0.9; P(Cloudy) = 0.1

Acutal Weather Forecast Sunny (Fs) Forecast Cloudy (Fc) Forecast Iffy (Fi)

Sunny 0.8 0.1 0.1

Cloudy 0.4 0.4 0.2

• If the forecast is sunny, the probability it will actually be sunny = 

Bayes’ Rule Example:
• Say Moffitt develops a test to detect cancer, with P(T | 

C) = 0.95, P(T’ | C’) = 0.95

• i.e. if a tested patient has cancer, the test will 
detect it with 95% probability

• if the patient does not have cancer, the test will 
report no cancer with 95% probability

• What is P(C | T)?

• i.e. if the test result indicates cancer, what is the 
probability that the patient actually has cancer?

• Say, P(C) = 0.005

Then  

• i.e. though the test is highly accurate, only in 8.7% of 
the cases, will a patient who tests positive for cancer 
actually have cancer

• But this is a great improvement over unconditional 
probability of 0.005
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• Ai are often called hypotheses, or causes

• P(Ai) is the apriori probability of hypothesis Ai

• P(Ai | B) is the aposteriori probability of Ai given B
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