
BSC 2011 Math review 2: Exponential equations 

At the end of this exercise, students should be able to: 

 Describe and solve equations for exponential growth and exponential decay  

 Visualize how the rate of change varies across a graph showing an exponential relationship 

 Explain how changing the value of the base in an exponential equation changes the slope of the 

curve 

 

Before getting into exponential functions, let’s first review the laws important laws of 

exponents: 

 

1. 𝑏𝑚. 𝑏𝑛  =   𝑏𝑚+𝑛 
 

2. 
𝑏𝑚

𝑏𝑛
= 𝑏𝑚−𝑛, 𝑏 ≠ 0 

 

3. 𝑏0 = 1 
 

4. 𝑏−𝑛 =
1

𝑏𝑛 

 

5. (𝑏𝑚)𝑛 = 𝑏𝑚𝑛 

 

6. (𝑎𝑏)𝑛 = 𝑎𝑛𝑏𝑛 

 

7. (
𝑎

𝑏
)𝑛 =

𝑎𝑛

𝑏𝑛 

 

8. If an=b; n=log(b)/log(a) 

                               

 

Now let’s discuss exponential functions. 

The basic exponential function is defined as ( ) xf x a , where 0,    and  1a a  .  Here a is called the 

base. If 0 1a  , the function is decreasing (called exponential decay, see below in figure 1, case 1) and 

if 𝑎 > 1, the function is increasing (called exponential growth, see below in figure 1, case 2).  

 

 

 



Figure 1. Exponential decay (case 1) and growth (case 2) functions. 

 

In figure 2, we compare exponential functions with different bases for both base greater than 1 

(exponential growth function) and between 0 and 1 (exponential decay).   

Note how𝑓(𝑥) =
1

10

𝑥
represents exponential decay that is the mirror image of the exponential growth 

function shown by 𝑓(𝑥) = 10𝑥.  Note also in figure 2 how the value of a changes the slope of the curve.  

Note also that given the laws of exponents shown above, 𝑓(𝑥) = (
1

10
)𝑥= 𝑓(𝑥) = 10−𝑥 . 

 



 

Figure 2. The equation 𝑓(𝑥) =  𝑎𝑥models exponential growth when 𝑎 > 1, and exponential decay when  

𝑎 is a fraction. 

 

 

Exponential Growth and Decay Models: 

Exponential models are used to describe population growth and radioisotope decay, among other 

things. Graphs of these functions are drawn with time on the x – axis and quantity on the y – axis.  

The general exponential growth/decay model is 𝐴(𝑡) = 𝐴0 𝑎𝑡. Here A(t) represents the quantity or 

number at any given time t. A0 represents the initial quantity or initial number.  a represents the 

multiplier for every time period. 

In this course, we will use exponential growth functions to examine a certain type of population growth, 

called exponential growth, which is depicted in Figure 3.  Each circle represents one individual (e.g. one 

bacterium).  The vertical axis represents time.  You can see from this diagram that with each passing 



generation, the number of individuals in the population doubles.  

 

Figure 3. Population growth with a doubling of individuals with each generation (i.e. in the equation 

𝐴(𝑡) = 𝐴0 ∗ (𝑎)𝑡  , a=2, t=one generation. 

 

 

Figure 4. Exponential population growth over time which can modeled with the equation:  

𝐴(𝑡) = 𝐴0 ∗ (𝑎)𝑡, for various values of 𝑎. 

 

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Q
u

an
ti

ty
 (

e.
g.

 n
u

m
b

er
 o

f 
in

d
iv

id
u

al
s)

Time (e.g. years)

a=1.1 a=1.15 a=1.2 a=1.25



 

 

Figure 5. In exponential decay models, the amount (e.g. of radioactive material, or initial concentration of 

chemical) decreases by half with every half-life.  This can modeled with the equations:  

𝐴(𝑡) = 𝐴0 ∗ (
1

2
)

𝐻
 𝑜𝑟 𝐴(𝑡) = 𝐴0 ∗ (

1

2
)

𝑡

𝑡ℎ𝑎𝑙𝑓−𝑙𝑖𝑓𝑒  or 𝐴(𝑡) = 𝐴0 ∗ (2)
−𝑡

𝑡ℎ𝑎𝑙𝑓−𝑙𝑖𝑓𝑒   

Here, H is the number of half times that have elapsed.  t is the time that has elapsed thalf-life is the length of 

a half-life. 

 

Half – Life (Exponential decay) 

Half – life is defined as the time required for decaying half of the original quantity.   

Doubling – time (Exponential Growth) 

The time required to double the original quantity.  

 

  



Examples of questions based on exponential functions: 

These questions are similar to those you will see on quizzes and exams in BSC 2011.  Below each question 

we provide a solution, both in written form and by using the formula.  Note that you use whichever 

method you prefer, as long as you are able to get to the correct answer.)  

 

1.     The half-life of Carbon-14 is about 5700 years. You have found a fossil that you believe to be 
about 22,800 years old because it has _____ the normal (modern) expected ratio of Carbon-14 
a. 1/4  
b. 1/8  

c. 1/16 
d. not enough information given 

 

Solution: Here we know since the half-life of Carbon – 14 is 5700, after 5700 years it becomes half of the 

original amount, in another 5700 years, that is a total of 11400 years, it becomes half of that amount, 

that is ¼ of the original amount. And in another 5700 years, that is a total of 17100 years, it becomes 

half of whatever left after 11400 years, and that is 1/8 of the original amount of Carbon – 14.  In another 

5700 years, that is a total of 22800 years, it becomes half of whatever left after 17100 years, and that is 

1/16 of the original amount of Carbon – 14. So the correct answer is C.  This is summarized in the table 

below: 

 

Time 
(years) 

# of half-
lives 

Amount of C-14 
(fraction of 

initial amount) 

Amount of C-
14 (% of initial 

amount) 

0 0 1 100 

5700 1 1/2 50 

11400 2 1/4 25 

17100 3 1/8 12.5 

22800 4 1/16 6.25 

28500 5 1/32 3.125 

34200 6 1/64 1.5625 

39900 7 1/128 0.78125 

45600 8 1/256 0.390625 

51300 9 1/512 0.1953125 

 

 

You can also calculate the amount of radioisotope left as function of time with the following equation: 

 

𝐴(𝑡) = 𝐴0 ∗ (
1

2
)

𝑡
5700 



 

          

Where A(t) is the quantify after time t has elapsed; N0 is the initial quantity and t is time that has 

elapsed, in years (divided here by 5700 because the half-life of Carbon-14 is 5700 years).  Since we want 

to know how much Carbon-14 is left as a proportion of the original amount (N0) rather actual units, we 

can simplify this equation to: 

 

𝐴(𝑡) = 𝐴0 ∗ (
1

2
)

𝑡

5700=𝐴(𝑡) = 𝐴0 ∗ (
1

2
)

22800

5700 = 𝐴0 ∗ (
1

2
)4=𝐴0 ∗

1

16
 

 

Again, using this equation we find that after 4 half-lives (or 22,800 years), the concentration of Carbon 

14 is 1/16th of what it was when the fossil was created.   

 

 

 

2.     A test tube is inoculated with 100 cells of a bacterial strain that has a generation time of 30 
minutes. The carrying capacity of the test tube for this strain is 6 billion cells. What will the bacterial 
population be after 90 minutes of culturing? 
a. ~200  c. ~800  
b. ~300   d. ~10,000  

Solution: Here the bacterial strain has a generation time of 30 minutes (which is the doubling time, since 

bacteria reproduce by binary fission where one bacterium becomes two bacteria), so in 30 minutes 100 

cells become 200 cells, in 60 minutes it will be 400 cells and in 90 minutes it will be 800 cells. So the 

correct answer is c.  This is summarized in the table below: 

Time 
(minutes) 

# 
generations 

Number of 
bacteria 

0 1 100 

30 2 200 

60 3 400 

90 4 800 

120 5 1600 

150 6 3200 

180 7 6400 

210 8 12800 

240 9 25600 

270 10 51200 

 

This can also be modeled as an exponential growth problem, using the following equation:   

𝐴(𝑡) = 𝐴0 ∗ 2𝐺   𝑂𝑅 𝐴(𝑡) = 𝐴0 ∗ 2
𝑡

𝑔𝑡𝐴(𝑡) = 𝐴0 ∗ 2
𝑡

30 

 



Here, G is the number of elapsed generation. t is amount of elapsed time (e.g. minutes) and gt is the 

generation time (e.g. minutes per generation).  This equation shows that every 30 minutes, the population 

will double (hence why the term a is 2).  After 90 minutes, we find that the population is: 

𝐴(𝑡) = 100 ∗ 2
90
30  = 100 ∗ 23 = 100 ∗ 8 = 800 

 

3. A certain strain of bacteria that is growing on your kitchen counter doubles every 6 minutes.  

Assuming that you start with only one bacterium, how many bacteria could be present at the end of 

126 minutes? 

Solution: After 126 minutes, 21 generations have elapsed (126 minutes/6 minutes per generation).  This 

means that the initial amount (1 bacterium) has doubled 21 times, hence is multiplied by 221 as see in the 

following equation  

𝐴(𝑡) = 𝐴0 ∗ 2
𝑡
6 = 1 ∗ 2

126
6 = 1 ∗ 221 = 2097152 

 

Time 
(minutes) 

# 
generations 

Number of 
bacteria 

0 0 1 

6 1 2 

12 2 4 

18 3 8 

24 4 16 

30 5 32 

36 6 64 

42 7 128 

48 8 256 

54 9 512 

60 10 1024 

66 11 2048 

72 12 4096 

78 13 8192 

84 14 16384 

90 15 32768 

96 16 65536 

102 17 131072 

108 18 262144 

114 19 524288 

120 20 1048576 

126 21 2097152 



 

 

4. If a person takes 125 milligrams of a drug at time 0, and the concentration of the drug left in the 

blood stream over time is represented by the function 𝑨(𝒕) = 𝑨𝟎 𝟎. 𝟕𝟏𝒕(where t is time in hours); 

what is the concentration of the drug in the bloodstream after 3 hours? 

Solution: We know that for every hour, the concentration is multiplied by 0.71.  Therefore, after one 

hour, there is 88.75mg left (125*0.71).  After another hour (total 2 hours), there is ~63mg left 

(88.75*0.71).  After another hour, for a total of 3 hours, there is ~44.74 mg of the drug in this person’s 

bloodstream (63*0.71). 

Time 
(hours) 

Amount of drug 
(% of initial 

amount) 

Amount of drug 
(mg) 

0 100 125 

1 71 88.75 

2 50.41 63.01 

3 35.79 44.74 

4 25.41 31.76 

5 18.04 22.55 

6 12.81 16.01 

7 9.10 11.37 

8 6.46 8.07 

9 4.58 5.73 

 

This can also be solved with the following exponential equation: 

𝐴(𝑡) = 𝐴0 0.71𝑡 = 125 ∗  0.713 = 44.74 

 

5. There is 1000 tons of largemouth bass (a species of fish) in a lake in 2016.  Your friend who works at 

the Florida Fish Wildlife Conservation Commission tells you that this population has been steadily 

growing, with a 10% increase in biomass every year.  Assuming that this rate of population growth is 

maintained, what biomass of largemouth bass do you expect to find in that lake in 2019? 

Solution: After one year (2017), there should be an additional 100 tons (1000tons*10%), for a total 

biomass of 1100tons.  In 2018, there will be another 110tons (1100*10%), for a total of 1210 tons.  In 

2019, another 121 tons (1210*10%) will be added to the population for a total biomass of 1332 tons. 

 

Time 
(years) 

Year 
Fish Biomass 

(tons) 

0 2016 1000 



1 2017 1100 

2 2018 1210 

3 2019 1331 

4 2020 1464 

5 2021 1611 

6 2022 1772 

7 2023 1949 

8 2024 2144 

9 2025 2358 

 

This can also be solved with the following exponential equation, where t=time in years and 1.1 

represents the yearly growth rate of the population (the amount that the population is multiplied by 

every year) 

𝐴(𝑡) = 𝐴0 1.1𝑡 = 1000 ∗  1.13 = 1331 

 

Bonus question (will NOT be asked to solve this type of question—where you have to solve 

for generation time—in quizzes and exams): 

 

6. A single bacterium is introduced to a petri dish.  After 260 minutes, there are now 8192 bacteria.  

How long is the generation time for this population of bacteria?   

Solution: 

8192 = 1 ∗ 2𝐺 

log (8192) = log (2𝐺) 

log (8192) = log (2)𝐺 

G =
log(8192)

log(2)
=  13 

Thirteen generations have elapsed in 260 minutes.  Therefore, the generation time is 20 minutes (260 

minutes/13 generations). 

  



If you need more refreshers on exponential functions and their interpretation, look at the 

following videos: 

1. Video on exponential growth function from the Khan Academy: 

https://www.khanacademy.org/math/algebra2/exponential-growth-and-decay-alg-

2/interpreting-the-rate-of-change-of-exponential-models/v/interpreting-change-in-exponential-

models 

2. Practice interpreting change in exponential growth models: 

https://www.khanacademy.org/math/algebra2/exponential-growth-and-decay-alg-

2/interpreting-the-rate-of-change-of-exponential-models/e/modeling-with-exponential-

functions 

3. Video on exponential decay from the Khan Academy: 

https://www.khanacademy.org/math/algebra2/exponential-growth-and-decay-alg-

2/interpreting-the-rate-of-change-of-exponential-models/v/interpreting-time-in-exponential-

models 

4. Practice interpreting change in exponential decay models: 

https://www.khanacademy.org/math/algebra2/exponential-growth-and-decay-alg-

2/interpreting-the-rate-of-change-of-exponential-models/e/rewriting-and-interpreting-

exponential-functions 

 

5. Video showing word problems with exponential functions from the Khan 

Academy:https://www.khanacademy.org/math/algebra2/exponential-growth-and-decay-alg-

2/intro-to-rate-of-exponential-growth-and-decay/v/word-problem-solving-exponential-growth-

and-decay 

 

 


